Muonic

Jan 11, 2023

Contents:

muonic - a python gui for QNET experiments

1.1 Licence and terms of agreement

muonic setup and installation

2.1 prerequesitories e e e e e e e e
2.2 installation with the setup.py script

2.3 installing muonic without the setup script

How to use muonic 4

3.1 OVerVIEW . . . v o e
3.1.1 Datawells
3.1.2 Datasinks
32 Startmuonicd e e

How to use muonic (OLD)

4.1 Start muomniC v v e e e e e e e e e e e e e
4.2 Saving fileswithmuonic
4.3 Performing measurements with muonic

Fermilab DAQ - hardware documentation

5.1 ASCIIDAQoutputformat
5.2 DAQ onboard documentation
521 VI oo e
rewrite package
6.1 Subpackages
6.1.1 rewritelibpackage, .
6.1.1.1 Subpackages
6.1.1.2 Submodules
6.1.1.3 rewrite.lib.Skyview module
6.1.1.4 Modulecontents
6.2 Submodules
6.3 rewrite.example_measurement module
6.4 rewriterunRatesmodule L.
6.5 rewriterunServermodule L.
6.6 rewrite.runWriterToMongoDB module
6.7 rewrite.simpleClientmodule

_ -

AN L L L W W W W

[ecliolEN RN |

6.8 Module contents
7 Indices and tables
Python Module Index

Index

29

31

33

CHAPTER 1

muonic - a python gui for QNET experiments

The muonic project provides an interface to communicate with QuarkNet DAQ cards and to perform simple analysis
of the generated data. Its goal is to ensure easy and stable access to the QuarkNet cards and visualize some of the
features of the cards. It is meant to be used in school projects, so it should be easy to use even by people who do not
have lots LINUX backround or experience with scientific software. Automated data taking can be used to ensure no
valuable data is lost.

1.1 Licence and terms of agreement

Muonic is ditributed under the terms of GPL (GNU Public License). With the use of the software you accept the
condidions of the GPL. This means also that the authors can not be made responsible for any damage of any kind to
hard- or software.

Muonic

2 Chapter 1. muonic - a python gui for QNET experiments

CHAPTER 2

muonic setup and installation

Muonic consists of two main parts: 1. the python package muonic 2. a python executable

2.1 prerequesitories

muonic needs the following packages to be installed (list may not be complete!)
* python-scipy
* python-matplotlib
* python-numpy
* python-qt4
* python-serial

* python-future

2.2 installation with the setup.py script

Run the following command in the directory where you checked out the source code:
python setup.py install

This will install the muonic package into your python site-packages directory and also the exectuables muonic and
which_tty_dagq to your usr/bin directory. It also generates a new directory in your home dir: $HOME/muonic_data

The use of python-virtualenv is recommended.

2.3 installing muonic without the setup script

You just need the script ./bin/muonic to the upper directory and rename it to muonic.py. You can do this by typing

Muonic

mv bin/muonic muonic.py
while being in the muonic main directory.
Afterwards you have to create the folder muonic_data in your home directory.

mkdir ~/muonic_data

4 Chapter 2. muonic setup and installation

CHAPTER 3

How to use muonic 4

3.1 Overview

Munic consist of different parts in the DAQ chain: Data wells and data sinks. The data wells provide/create/acquire
data for the DAQ chain, opposed to data sinks which process the data.

3.1.1 Data wells
The job of data wells is to enter data into the muonic DAQ chain. The data can either be acquired from hardware or
pre-recorded data. Currently muonic4 provides these data wells:

1. A DAQ Server, which communicates with the DAQ card and takes live measurements

2. A reader from file, which reads pre-ecorded data from a file.

3. A reader from DB, which reads pre-recorded data from a mongoDB instance.

3.1.2 Data sinks
The job of data sinks is to process data generated by a data well. Data sinks are not exclusive, meaning multiple
sinks can run simultaneously and process the same data. Currently muonic4 provides these data sinks:

1. A writer to a file, which saves incoming data to a file.

2. A writer to DB, which saves incoming data to a mongoDB instance.

3. A simple client, which simply dumps the incoming data to the terminal.

4. A Pulse Analyzer, which analyses and prints the pulse times.

5. A Rate Analyzer, which analyses the count rates.

Muonic

3.2 Start muonic4

In order to run muonic a data sink and at least one data well must be running. To start a data well one of the following
commands need to be run before starting a data sink:

* python3 runServer.py
* python3 runReaderFromFile.py
* python3 runReaderFromMongoDB.py

After one of the data well has been started one or multiple data sinks can be started. This can be done by these
commands:

e python3 runPulses.py

* python3 runRates.py

e python3 runWriterToFile.py

* python3 runWriterToMongoDB.py

e python3 simpleClient.py

6 Chapter 3. How to use muonic 4

CHAPTER 4

How to use muonic (OLD)

4.1 start muonic

If you have setup muonic via the provided setup.py script or if you hav put the package somewhere in your PYTHON-
PATH, simple call from the terminal

muonic [OPTIONS] xy

where xy are two characters which you can choose freely. You will find this two letters occuring in automatically
generated files, so that you can identify them.

For help you can call

muonic —--help

which gives you also an overview abot the options.

[OPTIONS]

-s

use the simulation mode of muonic (no real data, so no physics behind!). This should only
-d

debug mode. Use it to generate more log messages on the console.

-t sec

change the timewindow for the calculation of the rates. If you expect very low rates, you I
default is 5 seconds.

-P
automatically write a file with pulsetimes in a non hexadecimal representation

-n
supress any status messages in the output raw data file, might be useful if you want use m

Muonic

4.2 Saving files with muonic

All files which are saved by muonic are ASCII files. The filenames are as follows:

Warning: currently all files are saved under SHOME/muonic_data. This directory must exist. If you use the
provided setup script, it is created automatically

YYYY-MM-DD_HH-MM-SS_TYPE_MEASUREMENTTME_xy
e YYYY-MM-DD is the date of the measurement start
e HH-MM-SS is the GMT time of the measurement start

* MEASUREMENTTIME if muonic is closed, each file gets is corresponding measurement time (in hours) as-
signed.

* xy the two letters which were specified at the start of muonic
* TYPE might be one of the following:

* RAW the raw ASCII output of the DAQ card, this is only saved if the ‘Save to file’ button in clicked in the ‘Daq
output’ window of muonic

* R is an automatically saved ASCII file which contains the rate measurement data, this can then be used to plot
with e.g. gnuplot later on

» L specifies a file with times of registered muon decays. This file is automatically saved if a muon decay mea-
surement is started.

P stands for a file which contains a non-hex representation of the registered pulses. This file is only save if the
-p option is given at the start of muonic

Representation of the pulses:
(69.15291364, [(0.0, 12.5)], [(2.5, 20.0)], [], [])

This is a python-tuple which contains the triggertime of the event and four lists with more tuples. The lists represent
the channels (0-3 from left to right) and each tuple stands for a leading and a falling edge of a registered pulse. To get
the exact time of the pulse start, one has to add the pulse LE and FE times to the triggertime

Note: For calculation of the LE and FE pulse times a TMC is used. It seems that for some DAQs cards a TMC bin
is 1.25 ns wide, allthough the documentation says something else. The triggertime is calculated using a CPLD which
runs in some cards at 25MHz, which gives a binwidth of the CPLD time of 40 ns. Please keep this limited precision
in mind when adding CPLD and TMC times.

4.3 Performing measurements with muonic

For DAQ setup it is recommended to use the ‘settings’ menu, allthough everything can also be setup via the command
line in the DAQ output window (see below.) Muonic translates the chosen settings to the corresponding DAQ com-
mands and sends them to the DAQ. So if you want to change things like the coincidence time window, you have to
issue the corresponding DAQ command in the DAQ output window.

Two menu items are of interest here: * Channel Configuration: Enable the channels here and set coincidence settings.
A veto channel can also be specified. * .. note:

8 Chapter 4. How to use muonic (OLD)

Muonic

You have to ensure that the checkboxes for the channels you want to use are checked
—before you leave this dialogue, otherwise the channel gets deactivated.

Note: The concidence is realized by the DAQ in a way that no specific channels can be given. Instead this is meant
as an ‘any’ condition. So ‘twofold’ means that ‘any two of the enabled channels’ must claim signal instead of two
specific ones (like 1 and 2).

Warning: Measurements at DESY indicated that the veto feature of the DAQ card might not work properly in all
cases.

» Thresholds: For each channel a threshold (in milliVolts) can be specified. Pulse which are below this threshold
are rejected. Use this for electronic noise supression. One can use for the calibration the rates in the muon rates
tab.

Note: A proper calibration of the individual channels is the key to a succesfull measurement!

In the first tab a plot of the measured muonrates is displayed. A triggerrate is only shown if a coincidence condition is
set. In the block on the right side of the tab, the average rates are displayed since the measurement start. Below you
can find the number of counts for the individual channels. On the bottom right side is also the maximum rate of the
measurment. The plot and the shown values can be reset by clicking on ‘Restart’. The ‘Stop’ button can be used to
temporarily hold the plot to have a better look at it.

Note: You can use the displayed ‘max rate’ at the right bottom to check if anything with the measurement went
wrong.

Note: Currently the plot shows only the last 200 seconds. If you want to have a longer timerange, you can use the
information which is automatically stored in the ‘R’ file (see above).

A lifetime measurement of muons can be performed here. A histogram of time differences between succeding pulses
in the same channel is shown. It can be fit with an exponential by clicking on ‘Fit!’. The fit lifetime is then shown in
the above right of the plot, for an estimate on the errors you have to look at the console.

The measurment can be activated with the checkbox. In the following popup window the measurment has to be configured. It d

* more than one pulse appears in the single pulse channel and none pulse is measured in the double pulse
channel

* one pulse in the single pulse channel appears and exactly two pulses in the double pulse channel.

Warning: The error of the fit might be wrong!

In this tab the muon velocity can be measured. The measurement can be started with activating the checkbox. In the
following popup window it has to be configured.

4.3. Performing measurements with muonic 9

Muonic

Warning: The error of the fit might be wrong!

You can have a look at the pulsewidhts in this plot. The height of the pulses is lost during the digitization prozess, so
all pulses have the same height here. On the left side is an oscilloscope of the pulsewidths shown and on the right side
are the pulsewidths collected in an histogram.

In this tab you can read out the GPS information of the DAQ card. It requires a connected GPS antenna. The
information are summarized on the bottom in a text box, from where they can be copied.

The last tab of muonic displays the raw ASCII DAQ data. This can be saved to a file. If the DAQ status messages
should be supressed in that file, the option -n should be given at the start of muonic. The edit field can be used to
send messages to the DAQ. For an overview over the messages, look here (link not available yet!). To issue such an
command periodically, you can use the button ‘Periodic Call’

Note: The two most importand DAQ commands are ‘CD’ (‘counter disable’) and ‘CE’ (‘counter enable’). Pulse
information is only given out by the DAQ if the counter is set to enabled. All pulse related features may not work
properly if the counter is set to disabled.

10 Chapter 4. How to use muonic (OLD)

CHAPTER B

Fermilab DAQ - hardware documentation

5.1 ASCII DAQ output format

sample line of DAQ output - example for the daq data format

trig- ro |fO |1 | f1 [r2 | f2 | r3 |3 | onepps gp- gps- | gps- | gps- XX | cor-
gers stime | dte | valid | satelites rec-

tion
92328FEDO | 3D | 00 | 3E | 00 | 00 | 00 | 00 | 915E10CB34016.02060180V 00 0 | +0055

5.2 DAQ onboard documentation

Online help on the DAQ cards is available by sending the following commands to the DAQ

* V1,V2,V3

* HI

,H2

11

Muonic

5.2.1 V1

Setting example value description

Run Mode Off CE (cnt enable), CD (cnt disable)

Ch(s) Enabled 3,2,1,0 Cmd DC Reg CO using (bits 3-0)

Veto Enable Off VE 0 (Off), VE 1 (On)

Veto Select Ch0 Cmd DC Reg CO using (bits 7,6)

Coincidence 1-4 1-Fold Cmd DC Reg CO using (bits 5,4)

Pipe Line Delay 40 nS Cmd DT Reg Tl=rDelay Reg
T2=wDelay 10nS/cnt

Gate Width 100 nS Cmd DC Reg C2=LowByte Reg
C3=HighByte 10nS/cnt

Veto Width 0nS Cmd VG (10nS/cnt)

ChO Threshold Chl Threshold Ch2 | 0.200 vits 0.200 vits 0.200

Threshold Ch3 Threshold vlts 0.200 vlts

Test Pulser VIt Test Pulse Ena 3.000 vlts Off

Example line for 1 of 4 channels. (Line Drawing, Not to Scale):

Input Pulse edges (begin/end) set rising/falling tags bits.
~~~~~~ Input Pulse, Gate cycle begins
~ Delayed Rise Edge 'RE' Tag Bit
~ Delayed Fall Edge 'FE' Tag Bit
Tag Bits delayed by PipeLnDly

| PipelLineDelay : 40nS
\ | Capture Window: 60nS
| \ Gate Width : 100ns

If ‘RE’,FE’ are outside Capture Window, data tag bit(s) will be missing.
CaptureWindow = GateWidth - PipeLineDelay

The default Pipe Line Delay is 40nS, default Gate Width is 100nS.

Setup CMD sequence for Pipeline Delay. CD, WT 1 0, WT 2 nn (10nS/cnt)

Setup CMD sequence for Gate Width. CD, WC 2 nn(10nS/cnt), WC 3 nn (2.56uS/cnt)

H2

Barometer Onet Help Page 2

BA — Display Barometer trim setting in mVolts and pressure as mBar.
BA d - Calibrate Barometer by adj. trim DAC ch in mVlts (0-4095mV) .
Flash

FL p - Load Flash with Altera binary file(x.rbf), p=password.

FR - Read FPGA setup flash, display sumcheck.

FMR p - Read page 0-3FF (h), (264 bytes/page)

Page 100h= start fpga x.rbf file, page O=saved setup.

GPS

NA O - Append NMEA GPS data Off, (include lpps data).

NA 1 — Append NMEA GPS data On, (Adds GPS to output).

NA 2 - Append NMEA GPS data Off, (no lpps data).

NM O - NMEA GPS display, Off, (default), GPS port speed 38400, locked.
NM 1 - NMEA GPS display (RMC + GGA + GSV) data.

(continues on next page)

12 Chapter 5. Fermilab DAQ - hardware documentation




Muonic

(continued from previous page)

NM 2 - NMEA GPS display (ALL) data, use with GPS display applications.
Test Pulser

TE m - Enable run mode, 0=0ff, 1=One cycle, 2=Continuous.

TD m - Load sample trigger data list, O=Reset, 1=Singles, 2=Majority.
TV m - Voltage level at pulse DAC, 0-4095mV, TV=read.

Serial #

SN p n - Store serial # to flash, p=password, n=(0-65535 BCD).

SN - Display serial number (BCD).

Status

ST - Send status line now. This resets the minute timer.

ST O - Status line, disabled.

ST 1 m - Send status line every (m) minutes. (m=1-30, def=5).

ST 2 m - Include scalar data line, chs S0-S4 after each status line.

ST 3 m - Include scalar data line, plus reset counters on each timeout.
TI n — Timer (day hr:min:sec.msec), TI=display time, (TI n=0 clear).
Ul n - Display Uart error counter, (Ul n=0 to zero counters).

VM 1 — View mode, 0x80=Event_Demarcation_Bit outputs a blank line.
- View mode returns to normal after 'CD','CE','ST' or 'RE'.

H1

Quarknet Scintillator Card, Qnet2.5 Vers 1.11 Compiled Jul 15 2009 HE=Help
Serial#=6531 uC_Volts=3.33 GPS_TempC=0.0 mBar=1023.8

CE - TMC Counter Enable.

CD - TMC Counter Disable.

DC - Display Control Registers, (C0-C3).

WC a d - Write Control Registers, addr (0-6) data byte (H).

DT — Display TMC Reg, 0-3, (l=PipelLineDelayRd, 2=PipeLineDelayWr).

WT a d - Write TMC Reg, addr(l,2) data byte(H), if a=4 write delay word.
DG - Display GPS Info, Date, Time, Position and Status.

DS - Display Scalar, channel (S0-S3), trigger(S4), time(S5).

RE — Reset complete board to power up defaults.

RB - Reset only the TMC and Counters.

SB p d - Set Baud,password, 1=19K, 2=38K, 3=57K ,4=115K, 5=230K, 6=460K, 7=920K
SA n - Save setup, 0=(TMC disable), 1=(TMC enable), 2=(Restore Defaults).
TH — Thermometer data display (@ GPS), -40 to 99 degrees C.

TL ¢ d - Threshold Level, signal ch(0-3) (4=setAll), data(0-4095mV), TL=read.
Veto - Veto select, Off='VE 0', On='VE 1', Gate='VG c¢', 0-255(D) 10ns/cnt.
View - View setup registers. Setup=V1l, Voltages(V2), GPS LOCK(V3).

HELP - HE,Hl1=Pagel, H2=Page2, HB=Barometer, HS=Status, HT=Trigger.

VE2

V2

Barometer Pressure Sensor

Calibration Voltage = 1495 mVolts Use Cmd 'BA' to calibrate.

Sensor Output Voltage= 1655 mVolts (2.93mV » 565 Cnts)

Pressure mBar = 1023.6 (1655.5 - 1500) /15 + 1013.25

Pressure inch = 30.63 (mBar / 33.42)

Timer Capture/Compare Channel
TempC = 0.0 Error? Check sensor cable connection at GPS unit.
TempF = 32.0 (TempC * 1.8) + 32

Analog to Digital Converter Channels (ADC)
Vece 1.80V = 1.82 vlts (2.93mV = 621 Cnts)

(continues on next page)

5.2. DAQ onboard documentation 13




Muonic

(continued from previous page)

Vcc
Pos
Neg
Vcc
Pos

w N

.20V
.50V
.00V
.30V
5.

oov

5V Test

V3

10 Second

Buffer

O J o U b W

1.19 vlts
2.45 vlts
= 5.03 vlts
3.33 vlts
= 4.84 vlts
Max=4.86v

SO NN

(
(
(
(

. 93mv
. 93mv
.38mv
.84mv
(7.

38mv

Min=4.84v

407
* 837
* 682
689
* 656

*

*

Cnts)
Cnts)
Cnts)
Cnts)
Cnts)

Noise=0.015v

Accumulation of 1PPS Latched 25MHz Counter. (20 line buffer)
Prev—-Now

Now (hex)

O O OO O O o o o

O O O O O O O o o o o

0

O O O O O O O o

O OO O O OO oo oo

(dec)

(25e6%10)

14

Chapter 5. Fermilab DAQ - hardware documentation




CHAPTER O

rewrite package

6.1 Subpackages

6.1.1 rewrite.lib package

6.1.1.1 Subpackages

rewrite.lib.analyzers package
Submodules
rewrite.lib.analyzers.RateAnalyzer module

class rewrite.lib.analyzers.RateAnalyzer.RateAnalyzer (logger=None, head-

less=True)
Bases: object

Class that manages the measurement of muon rate.
fileWriter ()

measure_rates (timewindow=>5.0, meastime=None)
Measure rates seen by the counters. :param timewindow: Time between successive rate measurements in
seconds. Default is 5 seconds. :param meastime: Total measurement time in minutes. Default is None.

runDaemon ()

write_rates_to_file (firstline=False)
Saves data to file during rate measurements.

Module contents

15



Muonic

rewrite.lib.common package
Submodules
rewrite.lib.common.CountRecord module

class rewrite.lib.common.CountRecord.CountRecord (msg)
Bases: object

Holds the counting information
incoming format: DS S0=00000000 S1=00000000 S2=00000000 S3=00000000 S4=00000000 S5=18531FFD
Parameters
* (Bool) (valid) — validity of the record. Will be set to True if the message starts with
DS’
e (int) (counts_trigger)— Counts in channel X
* (int) - trigger counts recieved

* (Real) (counts_time) - the time of the record

rewrite.lib.common.DataRecord module

class rewrite.lib.common.DataRecord.DataRecord (msg)
Bases: object

Record to hold a DataRecords from the DAQ card. Basically just a string wrapper.

msg =

rewrite.lib.common.PressureRecord module

class rewrite.lib.common.PressureRecord.PressureRecord (msg)
Bases: object

Holds Pressure information
incoming format: ‘BA 1495’ or: “mBar now reads = 1015.0 (use cmd ‘SA’ when done)”
Parameters
* (Bool) (valid) - Validity of the record. Set to True, if the message starts with ‘BA’
* (Real) (pressure) — Floating point value of in the pressure record
* (PressureType) (pressure_type)— Either mBar or plain data

class rewrite.lib.common.PressureRecord.PressureType
Bases: enum.Enum

Type of measured pressure. Plaindata or mBar
MBAR =1

PLAIN = 0

16 Chapter 6. rewrite package



Muonic

rewrite.lib.common.Record module

class rewrite.lib.common.Record.Record (packageNumber, RecType, timestamp, payload)
Bases: object

The basic data-structure used to communicate between DAQ and analysis
VERY EARLY STAGE! Everything is subject to change!
Parameters
* packageNumber — A sequential number of all packages send by a DAQ server
* RecType — Type of the record
* timestamp — Unixtimestamp
* payload - Payload to be send

class rewrite.lib.common.Record.RecordType
Bases: enum. IntEnum

Enum of the possible types of Records between DAQ and analysis. Enum for “type-safety”

CONTROL = 0
COUNTER = 4
DATA = 1
GPS =5

PRESSURE = 3

TEMPERATURE = 2

rewrite.lib.common.TemperatureRecord module

class rewrite.lib.common.TemperatureRecord.TemperatureRecord (msg)
Bases: object

Holds Temperature information
incoming format: TH TH=22.2
Parameters
* (Bool) (valid) - Validity of the record. Set to True, if the message starts with ‘TH’

* (Real) (temperature)— The temperature of the record.

Module contents

rewrite.lib.daq package
Submodules
rewrite.lib.daq.Connection module

class rewrite.lib.daq.Connection.DAQConnection (in_queue, out_queue, logger=None)
Bases: object

6.1. Subpackages

17



Muonic

DAQ Connection class.

Raises SystemError if serial connection cannot be established.

Parameters
* logger (logging.Logger) — logger object
* in_queue - input queue
* out_queue - output queue

Raises SystemError

get_serial_port ()

Check out which device (/dev/tty) is used for DAQ communication.
Raises OSError if binary ‘which_tty_daq’ cannot be found.
Returns serial.Serial — serial connection port
Raises OSError

read ()
Gets Data from the DAQ card. Read it from the provided queue.

Returns None

write ()

Writes messages from the in queue to the DAQ card

Returns None

rewrite.lib.daq.DAQServer module

class rewrite.lib.daqg.DAQServer .DAQServer

Bases: object

check_pressure_msg (msg)
Check message for pressure information.

clear_queues ()
Clear all the queues filled in process_incoming().

do (msg)
Send a command to the DAQ card and remove repeated responses from the outqueue if data taking is
turned off. Otherwise just send the command to the card.

get_gps_info ()

get_scalars (msg=None)
If running=True, read out scalars from the counterqueue. Otherwise, read scalars from given message.
Returns the scalar values.

get_temp_and pressure ()
Read out temperature and pressure data. Pressure data in unit counts and mBar. If no measurement is
running returns temperature, pressure, pressure_mbar

measure_pulses (meastime=None)
Measure pulses (rising and falling edge times) of trigger events. Using PulseExtractor from muonic.
:param meastime: Total measurement time in minutes. Default is None.

process_incoming ()
Sort messages received from the DAQ card and store them in separate queues.

18

Chapter 6. rewrite package



Muonic

read_scalars ()
Read the scalars of all channels. If no measurement is running, returns scalar values: ch0, chl, ch2, ch3,
trigger

reset_scalars ()
Reset the scalars of all channels.

run ()
setRunning (isRunning)

set_threashold (th_0=300, th_1=300, th_2=300, th_3=300)
Set the threasholds for the channels of the DAQ card. Default value for all channels is 300.

setup_channel (chO=False, chl=False, ch2=False, ch3=False, coincidence="single’)
Enable/Disable channels of the DAQ card and set coincidence settings.

start_reading data()
Start receiving data from the DAQ card and storing it in self.dataqueue.

stop ()

stop_reading data()
Stop receiving data from the DAQ card.

rewrite.lib.daq.Exceptions module

Utility classes and functions needed by DAQ related modules

exception rewrite.lib.daqg.Exceptions.DAQIOError

Bases: OSError

DAQ IOError Exception class

exception rewrite.lib.daq.Exceptions.DAQMissingDependencyError

Bases: Exception

Exception class which is thrown if runtime dependencies are not met

rewrite.lib.daq.Provider module

class rewrite.lib.daq.Provider.DAQProvider (logger=None)

Bases: object
Class providing the public API and helpers for the communication with the DAQ card
LINE_PATTERN = re.compile("*[a-zA-Z20-9+-.,: ()=$/#2!%_Q@*|~' 1*x[\n\r]x$")

data_available ()
Tests if data is available from the DAQ card.

Returns int or bool

get (*args)
Get data from the DAQ card.

Raises DAQIOError if the queue is empty.
Parameters args (1ist)-— queue arguments

Returns str or None — next item from the queue

6.1.

Subpackages 19



Muonic

Raises DAQIOError

put (*args)
Senf data to the DAQ card.

Parameters args (1ist)— queue arguments
Returns None

validate_line (line)
Validate line againt regex pattern. Returns None if the provided line is invalid or the line if it is valid.

Parameters line (str) - line to validate

Returns str or None

rewrite.lib.daq.getDevice module

rewrite.lib.dag.getDevice.get_Device ()
Reads dmesg and searches for the daq card. Then returns its name.

returns ttyUSBO by default
Returns name of the device file in /dev/ or ttyUSBO by default

Module contents

rewrite.lib.utils package

Subpackages

rewrite.lib.utils.db package

Submodules
rewrite.lib.utils.db.CountRecordAdapter module

class rewrite.lib.utils.db.CountRecordAdapter.CountRecordAdapter (*args,

*rkwargs)
Bases: mongoengine.document . EmbeddedDocument

Adapter class to store Counts in MongoDB
Parameters
* (Bool) (valid) - validity of the record.
* (int) (counts_trigger)— Counts in channel X
* (int) - trigger counts recieved
¢ (Real) (counts_time) - the time of the record

counters_time
Counts in the time register of the DAQ card. Basically a timestamp

counts_chO
Counts in channel 0

20 Chapter 6. rewrite package



Muonic

counts_chl
Counts in channel 1

counts_ch2
Counts in channel 2

counts_ch3
Counts in channel 3

counts_trigger
Trigger counts

createCount ()
Creates a CountRecord from the current object

Returns CountRecord from the current CountRecord Adapter

static get (rec)
Creates a CountRecordAdapter from a CountRecord

Parameters rec — CountRecord to convert

valid
Set to true if the underlying record is valid

rewrite.lib.utils.db.DataRecord Adapter module

class rewrite.lib.utils.db.DataRecordAdapter.DataRecordAdapter (*args,

**kwargs)
Bases: mongoengine.document . EmbeddedDocument

Adapter class for the data record. Basically just a string wrapper.

createData ()
Converts the current object to a DataRecord

Returns DataRecord from the current DataRecord Adapter

static get (rec)
Create a DataRecordAdapter from a DataRecord

Parameters rec — DataRecord to convert

msg
A unicode string field.

rewrite.lib.utils.db.PressureRecordAdapter module

class rewrite.lib.utils.db.PressureRecordAdapter.PressureRecordAdapter (*args,

**kwargs)
Bases: mongoengine.document . EmbeddedDocument

Adapter class for the pressure record.
Parameters
* (Bool) (valid) - Validity of the record. Set to True, if the message starts with ‘BA’
* (Real) (pressure) — Floating point value of in the pressure record

* (PressureType) (pressure_type)— Either mBar or plain data

6.1. Subpackages 21



Muonic

createPressure ()
Converts the current object to a PressureRecord

Returns PressureRecord from the current PressureRecordAdapter

static get (rec)
Create a PressureRecordAdapter from a PressureRecord

Parameters rec — PressureRecord to convert

pressure
Fixed-point decimal number field. Stores the value as a float by default unless force_string is used. If
using floats, beware of Decimal to float conversion (potential precision loss)

pressure_type
A unicode string field.

valid
Boolean field type.

rewrite.lib.utils.db.RecordAdapter module

class rewrite.lib.utils.db.RecordAdapter.RecordAdapter (**kwargs)
Bases: mongoengine.document .Document

This is an adapter class which helps to save and load a record in MongoDB.
Parameters

» _id - Object ID given by MongoDB. Explicitly declared to be able to load from dict.
* packageNumber — A sequential number of all packages send by a DAQ server
* RecType - Type of the record
* timestamp — Unixtimestamp
* payload_cnt — Count Payload
* payload_dat — Data Payload
* payload_tme — Temperature Payload
* payload_prs — Pressure Payload

Sadly the payload for each type of payload needs to be in a separate field, as we need an EmbeddedDocument-
Field of a certain type.

exception DoesNotExist
Bases: mongoengine.errors.DoesNotExist

exception MultipleObjectsReturned
Bases: mongoengine.errors.MultipleObjectsReturned

createRecord ()
Creates a Record with the current data.

Returns Record with the current data

static get (rec)
Construct a RecordAdapter from a Record

Parameters rec — a record that will be converted to a RecordAdapter

Returns a newly constructed RecordAdapter

22 Chapter 6. rewrite package



Muonic

static getChoice (i)
Translate RecordType aka int to string.

Parameters i — RecordType to be converted.
id
A field wrapper around MongoDB’s Objectlds.

objects
The default QuerySet Manager.

Custom QuerySet Manager functions can extend this class and users can add extra queryset functionality.
Any custom manager methods must accept a Document class as its first argument, and a QuerySet as
its second argument.

The method function should return a QuerySet , probably the same one that was passed in, but modified
in some way.

packageNumber
32-bit integer field.

payload_cnt
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

payload_dat
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

payload _prs
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

payload_tem
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

timestamp
Datetime field.

Uses the python-dateutil library if available alternatively use time.strptime to parse the dates. Note:
python-dateutil’s parser is fully featured and when installed you can utilise it to convert varying types
of date formats into valid python datetime objects.

Note: To default the field to the current datetime, use: DateTimeField(default=datetime.utcnow)

Note: Microseconds are rounded to the nearest millisecond. Pre UTC microsecond support is effec-
tively broken. Use ComplexDateTimeField if you need accurate microsecond support.

type
only valid choices here are: CONTROL, DATA, TEMPERATURE, PRESSURE, COUNTER

Type String

rewrite.lib.utils.db.TemperatureRecordAdapter module

class rewrite.lib.utils.db.TemperatureRecordAdapter.TemperatureRecordAdapter (*args,

**kwargs)
Bases: mongoengine.document . EmbeddedDocument

Adapter class for the temperature record.

6.1. Subpackages 23



Muonic

Parameters
* (Bool) (valid) - Validity of the record. Set to True, if the message starts with ‘“TH’
* (Real) (temperature) - The temperature of the record.

createTemperature ()
Converts the current object to a TemperatureRecord

Returns TemperatureRecord from the current TemperatureRecord Adapter

static get (rec)
Create a TemperatureRecordAdapter from a TemperatureRecord

Parameters rec — TemperatureRecord to convert

temperature
Fixed-point decimal number field. Stores the value as a float by default unless force_string is used. If
using floats, beware of Decimal to float conversion (potential precision loss)

valid
Boolean field type.

Module contents
Submodules
rewrite.lib.utils.WriterToMongoDB module

class rewrite.lib.utils.WriterToMongoDB.WriterToMongoDB (logger=None)
Bases: object

Writes incoming data to the MongoDB for storage
DBWriter ()

runDaemon ()

rewrite.lib.utils.ReaderFromMongoDB module

class rewrite.lib.utils.ReaderFromMongoDB.ReaderFromMongoDB (logger=None)
Bases: object

Class that read data from MongoDB and sends it as if it were coming from a DAQ card. This is a basic version,
which can be extended. Inits the MongoDB connection and the zeromq socket. This needs to start before any
analysis.

clear_queues ()
Fake function. Just for API compatibility

do (arg)
Fake function. Just for API compatibility

get_temp_and_pressure ()
Fake function. Just for API compatibility

read_scalars ()
Fake function. Just for API compatibility

24 Chapter 6. rewrite package



Muonic

reset_scalars ()
Fake function. Just for API compatibility

run ()
Get data from a certain timeframe from the db and then sends it through the socket.

setRunning (state)
Fake function. Just for API compatibility

set_threashold (ch0, chl, ch2, ch3)
Fake function. Just for API compatibility

setup_channel (chO, chl, ch2, ch3, coincidence)
Fake function. Just for API compatibility

start_reading data()
Fake function. Just for API compatibility

stop_reading data()
Fake function. Just for API compatibility

Module contents

6.1.1.2 Submodules
6.1.1.3 rewrite.lib.Skyview module

class rewrite.lib.Skyview.Skyview
Bases: object

calculate_rates()
Calculate rates during rate measurements.

check_pressure_msg (msg)
Check message for pressure information.

clear_queues ()
Clear all the queues filled in process_incoming().

do (msg)
Send command to DAQ card and remove repeated response from the outqueue if data taking is turned off.
Otherwise just send command to DAQ card.

get_gps_info ()

get_scalars (msg=None)
If running=True, read out scalars from the counterqueue. Otherwise, read scalars from given message.
Returns the scalar values.

get_temp_and pressure ()
Read out temperature and pressure data. Pressure data in unit counts and mBar. If no measurement is
running returns temperature, pressure, pressure_mbar

measure_pulses (meastime=None)
Measure pulses (rising and falling edge times) of trigger events. Using PulseExtractor from muonic.
:param meastime: Total measurement time in minutes. Default is None.

measure_rates (fimewindow=>5.0, meastime=None)
Measure rates seen by the counters. :param timewindow: Time between successive rate measurements in
seconds. Default is 5 seconds. :param meastime: Total measurement time in minutes. Default is None.

6.1. Subpackages 25



Muonic

process_incoming ()
Sort messages received from the DAQ card and store them in separate queues.

read_scalars ()
Read the scalars of all channels. If no measurement is running, returns scalar values: chO, chl, ch2, ch3,
trigger

reset_scalars ()
Reset the scalars of all channels.

set_threashold (th_0=300, th_1=300, th_2=300, th_3=300)
Set the threasholds for the channels of the DAQ card. Default value for all channels is 300.

setup_channel (chO=False, chl=False, ch2=False, ch3=False, coincidence="single’)
Enable/Disable channels of the DAQ card and set coincidence settings.

start_reading data()
Start receiving data from the DAQ card and storing it in self.dataqueue.

stop_reading data()
Stop receiving data from the DAQ card.

write_rates_to_file (filename=", firstline=False)
Saves data to file during rate measurements.

6.1.1.4 Module contents

6.2 Submodules
6.3 rewrite.example_measurement module

6.4 rewrite.runRates module

rewrite.runRates.run ()
Creates an instance of RateAnalyzer and runs a simple rate measurement.

6.5 rewrite.runServer module

class rewrite.runServer.RequestHandler (request, client_address, server)
Bases: xmlrpc.server.SimpleXMLRPCRequestHandler

Adapter Class for xmlrpc
rpc_paths = ('/RPC2',)

rewrite.runServer.run ()
Starts an instance of the DAQ server with xmlrpc enabled and then enters an infinite loop and processes requests

6.6 rewrite.runWriterToMongoDB module

rewrite.runWriterToMongoDB.run ()

26 Chapter 6. rewrite package



Muonic

6.7 rewrite.simpleClient module

rewrite.simpleClient.reciever_loop ()

rewrite.simpleClient.run()

6.8 Module contents

6.7. rewrite.simpleClient module 27



Muonic

28

Chapter 6. rewrite package



CHAPTER /

Indices and tables

* genindex
* modindex

e search

29



Muonic

30

Chapter 7. Indices and tables



Python Module Index

r

rewrite,
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.

27

lib,

lib

lib

17

rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.

lib.
lib.
1lib.
lib.
lib.
lib.
lib.
1lib.
1lib.
lib.

20

rewrite

.1lib.

21

rewrite

.1ib.

21

rewrite
rewrite

.1lib.
.1lib.

23

rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.

lib.
lib.

26

.analyzers, 15
lib.
lib.
lib.
lib.
.common.PressureRecord, 16
lib.
lib.

analyzers.RateAnalyzer, 15
common, 17

common .CountRecord, 16
common.DataRecord, 16

common .Record, 17
common . TemperatureRecord,

dag, 20

dag.Connection, 17
dag.DAQServer, 18
dag.Exceptions, 19
dag.getDevice, 20
dag.Provider, 19

Skyview, 25

utils, 25

utils.db, 24
utils.db.CountRecordAdapter

utils.db.DataRecordAdapter,
utils.db.PressureRecordAdapter,

utils.db.RecordAdapter, 22
utils.db.TemperatureRecordAdapter,

utils.ReaderFromMongoDB, 24
utils.WriterToMongoDB, 24

runRates, 26
runServer, 26
runWriterToMongoDB, 26
simpleClient, 27

31



Muonic

32

Python Module Index



Index

Symbols
-d
muonic

muonic
muonic
muonic

-t sec
muonic

command

command

command

command

command

line

line

line

line

line

option,7
option,7
option,7
option,7

option,7

automatically write a file with

pulsetimes in a non hexadecimal

representation

muonic command line option,7

C

calculate_rates|()

(rewrite.lib.Skyview.Skyview

COUNTER (rewrite.lib.common.Record.RecordType at-
tribute), 17

counters_time (rewrite.lib.utils.db. CountRecordAdapter. CountRecord/
attribute), 20

CountRecord (class in
rewrite.lib.common. CountRecord), 16
CountRecordAdapter (class in
rewrite.lib.utils.db. CountRecordAdapter),

20

counts_cho (rewrite.lib.utils.db. CountRecordAdapter. CountRecordAdap
attribute), 20

counts_chl (rewrite.lib.utils.db. CountRecordAdapter. CountRecordAdap
attribute), 20

counts_ch2 (rewrite.lib.utils.db. CountRecordAdapter. CountRecordAdap
attribute), 21

counts_ch3 (rewrite.lib.utils.db. CountRecordAdapter. CountRecordAdap
attribute), 21

counts_trigger (rewrite.lib.utils.db. CountRecordAdapter. CountRecorc
attribute), 21

createCount () (rewrite.lib.utils.db.CountRecordAdapter. CountRecord/

method), 25 method), 21
change the timewindow for the createData () (rewrite.lib.utils.db.DataRecordAdapter. DataRecordAday
calculation of the rates. If method), 21
you expect very low rates, you createPressure () (rewrite.lib.utils.db. PressureRecordAdapter. Pressui
might consider to change it to method), 21
larger values. createRecord () (rewrite.lib.utils.db.RecordAdapter.RecordAdapter
muonic command line option,7 method), 22

check_pressure_msg () createTemperature ()
(rewrite.lib.daq.DAQServer. DAQServer
method), 18 method), 24

check_pressure_msg ()
(rewrite.lib.Skyview.Skyview method), 25 D

clear_queues () (rewrite.lib.daq.DAQServer. DAQServeDAQConnect ion (class in rewrite.lib.daq.Connection),

method), 18 17

(rewrite.lib.utils.db. TemperatureRecordAdapter. TemperatureReco

clear_queues ()

(rewrite.lib.Skyview.Skyview DAQIOError, 19

method), 25 DAQMissingDependencyError, 19
clear_queues () (rewrite.lib.utils.ReaderFromMongoD B Re@dewkroadd oiegedd Bn rewrite.lib.daq. Provider), 19
method), 24 DAQServer (class in rewrite.lib.dag.DAQServer), 18

CONTROL (rewrite.lib.common.Record.RecordType at-

tribute), 17

DATA (rewrite.lib.common.Record.RecordType attribute),
17

33



Muonic

data_available () (rewrite.lib.daq.Provider. DAQProvidet _temp_and_pressure ()

(rewrite.lib.Skyview.Skyview method), 25

in get_temp_and_pressure ()

(rewrite.lib.utils.ReaderFromMongoDB.ReaderFromMongoDB
method), 24

getChoice () (rewrite.lib.utils.db.RecordAdapter.RecordAdapter

static method), 22

DBWriter () (rewrite.lib.utils. WriterToMongoDB. WriterTeMéngoddBite.lib.common.Record.RecordType attribute),

method), 19
DataRecord (class
rewrite.lib.common.DataRecord), 16
DataRecordAdapter (class in
rewrite.lib.utils.db.DataRecordAdapter),
21
method), 24
debug mode. Use it to generate more

log messages on the console. l

muonic command line option,7
default is 5 seconds.

muonic command line option,7

do ()

(rewrite.lib.daq. DAQServer. DAQServer method), L

17

id (rewrite.lib.utils.db.RecordAdapter.RecordAdapter at-

tribute), 23

18 LINE_PATTERN (rewrite.lib.daq.Provider. DAQProvider

do () (rewrite.lib.Skyview.Skyview method), 25

attribute), 19

do () (rewrite.lib.utils.ReaderFromMongoDB.ReaderFromMongoDB

method), 24 M

F MBAR (rewrite.lib.common.PressureRecord. PressureType

attribute), 16

fileWriter () (rewrite.lib.analyzers.RateAnalyzerRateAgalyzarre _pulses () (rewrite.lib.dag.DAQServerDAQServer

method), 15

G measure_pulses ()

get () (rewrite.lib.daq.Provider. DAQProvider method),
19

get () (rewrite.lib.utils.db.CountRecordAdapter. CountRecorndbdapter rates ()

static method), 21

get () (rewrite.lib.utils.db.DataRecordAdapter. DataRecordAdapter

static method), 21

method), 18
(rewrite.lib.Skyview.Skyview
method), 25

measure_rates () (rewrite.lib.analyzers.RateAnalyzer.RateAnalyzer

method), 15

(rewrite.lib.Skyview.Skyview

method), 25
(rewrite.lib.common.DataRecord.DataRecord

attribute), 16

get () (rewrite.lib.utils.db. PressureRecordAdapter. PressuraRegdrdAdizptlib. utils.db. DataRecordAdapter. DataRecordAdapter

static method), 22

attribute), 21

get () (rewrite.lib.utils.db.RecordAdapter.RecordAdapter muonic command line option

static method), 22

-d, 7

get () (rewrite.lib.utils.db.TemperatureRecordAdapter. TemperatureRecordAdapter

static method), 24
get_Device () (in module rewrite.lib.daq.getDevice),

20

get_gps_info () (rewrite.lib.dag.DAQServer. DAQServer
method), 18

get_gps_info () (rewrite.lib.Skyview.Skyview
method), 25

get_scalars () (rewrite.lib.daq. DAQServer. DAQServer
method), 18

get_scalars () (rewrite.lib.Skyview.Skyview method),
25

get_serial_port ()
(rewrite.lib.daq.Connection.DAQConnection
method), 18

get_temp_and_pressure ()
(rewrite.lib.daq.DAQServer. DAQServer
method), 18

-p, 7

-s,7

-t sec,”7

automatically write a file with
pulsetimes in a non hexadecimal
representation,’

change the timewindow for the
calculation of the rates. If
you expect very low rates, you
might consider to change it to
larger values.,7

debug mode. Use it to generate
more log messages on the
console.,7

default is 5 seconds.,7

supress any status messages in the
output raw data file, might be
useful if you want use muonic

34

Index



Muonic

only for data taking and use
another script afterwards for
analysis., 7

use the simulation mode of muonic
(no real data, so no physics
behind!). This should only
used for testing and developing
the software,’7

O

objects (rewrite.lib.utils.db.RecordAdapter.RecordAdapter

attribute), 23

P

read_scalars () (rewrite.lib.Skyview.Skyview

method), 26

read_scalars () (rewrite.lib.utils.ReaderFromMongoDB.ReaderFroml
method), 24

ReaderFromMongoDB (class in

rewrite.lib.utils.ReaderFromMongoDB), 24
reciever_loop () (in module rewrite.simpleClient),

27
Record (class in rewrite.lib.common.Record), 17
RecordAdapter (class in

rewrite.lib.utils.db.RecordAdapter), 22
RecordAdapter.DoesNotExist, 22

RecordAdapter.MultipleObjectsReturned,
22

packageNumber (rewrite.lib.utils.db.RecordAdapter. RecoREGRpFFY P (class in rewrite.lib.common.Record), 1]

attribute), 23

RequestHandler (class in rewrite.runServer), 26

payload_cnt (rewrite.lib.utils.db.RecordAdapter.Record Afipfdr—scalars () (rewrite. lib.daq. DAQServer. DAQServer

attribute), 23

payload_dat (rewrite.lib.utils.db.RecordAdapter. Record Afpflr—Scalars ()

attribute), 23

method), 19
(rewrite.lib.Skyview.Skyview
method), 26

payload_prs (rewrite. lib.utils.db.RecordAdapter.Recordfa%ﬁ?e;—s calars () (rewrite.lib.utils.ReaderFromMongoDB.ReaderFrom

attribute), 23

method), 24

payload_tem (rewrite.lib.utils.db.RecordAdapter.Record Afiptert© (module), 27

attribute), 23

PLAIN (rewrite.lib.common.PressureRecord. PressureType

attribute), 16
PRESSURE (rewrite.lib.common.Record.RecordType at-
tribute), 17

rewrite.lib (module), 26

rewrite.lib.analyzers (module), 15

rewrite.lib.analyzers.RateAnalyzer (mod-
ule), 15

rewrite.lib.common (module), 17

pressure (rewrite.lib.utils. db.PressureRecordAdapter.Pregfs‘fzy”e?jeté%%%?‘igptgp mmon . CountRecord  (module),

attribute), 22

pressure_type (rewrite.lib.utils.db. PressureRecordAdapteiPressareReCordARmS R

attribute), 22
PressureRecord (class in
rewrite.lib.common.PressureRecord), 16
PressureRecordAdapter (class in
rewrite.lib.utils.db. PressureRecordAdapter), 21
PressureType (class in
rewrite.lib.common.PressureRecord), 16
process_incoming ()
(rewrite.lib.daq.DAQServer. DAQServer

method), 18

process_incoming () (rewrite.lib.Skyview.Skyview
method), 25

put () (rewrite.lib.daq.Provider. DAQProvider method),
20

Fa

RateAnalyzer (class in

rewrite.lib.analyzers.RateAnalyzer), 15
(rewrite.lib.daq. Connection.DAQConnection
method), 18

read ()

read_scalars () (rewrite.lib.daq.DAQServer. DAQServe

method), 18

7

DataRecord (module), 16
rewrite.lib.common.PressureRecord (mod-
ule), 16
rewrite.lib.common.Record (module), 17
rewrite.lib.common.TemperatureRecord
(module), 17
rewrite.lib.daqg (module), 20
lib.daqg.Connection (module), 17
lib.daqg.DAQServer (module), 18
lib.daqg.Exceptions (module), 19
lib.daqg.getDevice (module), 20
lib.daqg.Provider (module), 19
lib.Skyview (module), 25
lib.utils (module), 25
lib.utils.db (module), 24
rewrite.lib.utils.db.CountRecordAdapter
(module), 20
rewrite.lib.utils
(module), 21
rewrite.lib.utils
(module), 21
rewrite.lib.utils
ule), 22
rewrite.lib.utils

rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.
rewrite.

.db.DataRecordAdapter
.db.PressureRecordAdapter
.db.RecordAdapter (mod-

.db.TemperatureRecordAdapter

Index

35



Muonic

(module), 23 method), 19
rewrite.lib.utils.ReaderFromMongoDB stop_reading_data () (rewrite.lib.Skyview.Skyview
(module), 24 method), 26
rewrite.lib.utils.WriterToMongoDB (mod- stop_reading_data ()
ule), 24 (rewrite.lib.utils.ReaderFromMongoDB.ReaderFromMongoDB
rewrite.runRates (module), 26 method), 25
rewrite.runServer (module), 26 supress any status messages in the
rewrite.runWriterToMongoDB (module), 26 output raw data file, might be
rewrite.simpleClient (module), 27 useful if you want use muonic
rpc_paths  (rewrite.runServer.RequestHandler — at- only for data taking and use
tribute), 26 another script afterwards for
run () (in module rewrite.runRates), 26 analysis.
run () (in module rewrite.runServer), 26 muonic command line option,7
run () (in module rewrite.runWriterToMongoDB), 26
run () (in module rewrite.simpleClient), 27 T
run () (rewrite.lib.daq.DAQServer DAQServer method), TEMPERATURE (rewrite.lib.common.Record.RecordType
19 attribute), 17
run () (rewrite.lib.utils.ReaderFromMongoDB.ReaderFromMaetgoDdx- ure (rewrite.lib.utils.db. TemperatureRecordAdapter. Temperatu
method), 25 attribute), 24
runDaemon () (rewrite.lib.analyzers.RateAnalyzer.RateAn@brgre ratureRecord (class in
method), 15 rewrite.lib.common.TemperatureRecord),
runDaemon () (rewrite.lib.utils. WriterToMongoDB.WriterToMongoDB
method), 24 TemperatureRecordAdapter (class in

rewrite.lib.utils.db. TemperatureRecordAdapter),

S 23

set_threashold () (rewrite.lib.daq.DAQServer. DAQSeivéme st amp (rewrite.lib.utils.db.RecordAdapter.RecordAdapter

method), 19 attribute), 23
set_threashold() (rewrite.lib.Skyview.Skyview type (rewrite.lib.utils.db.RecordAdapter.RecordAdapter
method), 26 attribute), 23
set_threashold () (rewrite.lib.utils.ReaderFromMonggDB.ReaderFromMongoDB
method), 25
setRunning () (rewrite.lib.daq. DAQServer. DAQServer use the simulation mode of muonic
method), 19 (no real data, so no physics
setRunning () (rewrite.lib.utils.ReaderFromMongoDB.ReaderFrotmMonga)B . This should only
method), 25 used for testing and developing
setup_channel () (rewrite.lib.daq. DAQServer. DAQServer the software
method), 19 muonic command line option,7
setup_channel () (rewrite.lib.Skyview.Skyview
method), 26 V
setup_channel () (rewrite.lib.utils.ReaderFromMongo B, ReadeekimneNibngdRBb. CountRecordAdapter. CountRecordAdapter
method), 25 attribute), 21
Skyview (class in rewrite.lib.Skyview), 25 valid (rewrite.lib.utils.db. PressureRecordAdapter. PressureRecordAdapter
start_reading_data() attribute), 22
(rewrite.lib.daq.DAQServer. DAQServer valid (rewrite.lib.utils.db. TemperatureRecordAdapter. TemperatureRecord
method), 19 attribute), 24
start_reading_data () validate_line () (rewrite.lib.daq.Provider. DAQProvider
(rewrite.lib.Skyview.Skyview method), 26 method), 20

start_reading_data ()
(rewrite.lib.utils. ReaderFromMongoDB.ReaderF rAMJ ongoDB

method), 25 write () (rewrite.lib.daq.Connection.DAQConnection
stop () (rewrite.lib.daq. DAQServer. DAQServer method), 18

method), 19 write_rates_to_file ()
stop_reading_data() (rewrite.lib.analyzers.RateAnalyzer.RateAnalyzer

(rewrite.lib.daq.DAQServer. DAQServer method), 15

36 Index



Muonic

write_rates_to_file ()
(rewrite.lib.Skyview.Skyview method), 26

WriterToMongoDB (class
rewrite.lib.utils. WriterToMongoDB), 24

Index

37



	muonic - a python gui for QNET experiments
	Licence and terms of agreement

	muonic setup and installation
	prerequesitories
	installation with the setup.py script
	installing muonic without the setup script

	How to use muonic 4
	Overview
	Data wells
	Data sinks

	Start muonic4

	How to use muonic (OLD)
	start muonic
	Saving files with muonic
	Performing measurements with muonic

	Fermilab DAQ - hardware documentation
	ASCII DAQ output format
	DAQ onboard documentation
	V1


	rewrite package
	Subpackages
	rewrite.lib package
	Subpackages
	Submodules
	rewrite.lib.Skyview module
	Module contents


	Submodules
	rewrite.example_measurement module
	rewrite.runRates module
	rewrite.runServer module
	rewrite.runWriterToMongoDB module
	rewrite.simpleClient module
	Module contents

	Indices and tables
	Python Module Index
	Index

